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Abstract

From an engeneering perspective, it is well known that numerous problems hamper the
proper control and prediction of complex systems which are essential for the reproducibil-
ity of their behavior. In addition, it is not obvious how the concept of complexity ought
to be understood within the tradition of physics and its epistemology. Both issues have
important ramifications for complex systems in other discplines as well.
Three outstanding topics in this regard are discussed. (1) Many definitions of complexity
stress its difference from randomness and are fundamentally context-dependent rather
than universal. (2) Complexity measures are often defined in information-theoretical
terms, but extend the scope of pure syntax toward semantic and pragmatic dimen-
sions. (3) Mathematical limit theorems, expressing the stability of a result, are often
not straightforwardly applicable to complex systems.

1 Introduction

The concept of complexity and the study of complex systems represent an im-
portant focus of research in contemporary science. Although one might say that
its formal core lies in mathematics and physics, complexity in a broad sense is
certainly one of the most interdisciplinary issues scientists of many backgrounds
have to face today. Beyond the traditional disciplines of the natural sciences,
the concept of complexity has even crossed the border to areas like psychology,
sociology, economics and others. It is impossible to address all approaches and
applications that are presently known comprehensively here; overviews from dif-
ferent eras and areas of complexity studies are due to Cowan et al. (1994), Cohen
and Stewart (1994), Auyang (1998), Scott (2005), Shalizi (2006), Gershenson
et al. (2007), Nicolis and Nicolis (2007), Mitchell (2009), Hooker (2011).

The study of complex systems continues a whole series of interdisciplinary
approaches, leading from system theory (Bertalanffy 1968) and cybernetics (Wie-
ner 1948) to synergetics (Haken 1977) and self-organization (Foerster 1962),
dissipative (Nicolis and Prigogine 1977) and autopoetic systems (Maturana and
Varela 1980), automata theory (Hopcroft and Ullmann 1979), and others. In
all these approaches, the concept of information plays a significant role in one
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or another way, first due to Shannon and Weaver (1949) and later also in other
contexts (Zurek 1989, Atmanspacher and Scheingraber 1991, Kornwachs and
Jacoby 1996, Marijuàn and Conrad 1996, Boffetta et al. 2002, Crutchfield and
Machta 2011).

A most important predecessor of complexity theory is the theory of nonlinear
dynamical systems, which originated from early work of Poincaré and was further
developed by Lyapunov, Hopf, Krylov, Kolmogorov, Smale, Ruelle – to mention
just a few outstanding names. Prominent areas in the study of complex systems
as far as it has evolved from nonlinear dynamics are fractals (Mandelbrot 1983),
chaos (Stewart 1990), cellular automata (Wolfram 1986, 2002), coupled map
lattices (Kaneko 1993, Kaneko and Tsuda 2000), symbolic dynamics (Lind and
Marcus 1995), self-organized criticality (Bak 1996), computational mechanics
(Shalizi and Crutchfield 2001), and network theory (Albert and Barabási 2002,
Boccaletti et al. 2006, Newman et al. 2006).

This ample (and incomplete) list notwithstanding, it is fair to say that one
important open question is the question for a fundamental theory with a universal
range of applicability, e.g., in the sense of an axiomatic basis, of nonlinear dy-
namical systems. Although much progress has been achieved in understanding a
large corpus of phenomenological features of dynamical systems, we do not have
any compact set of basic equations (like Newton’s, Maxwell’s, or Schrödinger’s
equations), or postulates (like those of relativity theory) for a comprehensive,
full-fledged, formal theory of nonlinear dynamical systems – and this applies to
the concept of complexity as well.

Which criteria does a system have to satisfy in order to be complex? This
question is not yet answered comprehensively, too, but quite a few essential issues
can be indicated. From a physical point of view, complex behavior typically (but
not always) arises in situations far from thermal equilibrium. This is to say
that one usually does not speak of a complex system if its behavior can be
described by the laws of linear thermodynamics. (In fact the entire framework of
equilibrium thermodynamics may become inapplicable in such situations.) The
thermodynamical branch of a system has to become unstable before complex
behavior can emerge. In this manner the concept of instability becomes an
indispensable element of any proper understanding of complex systems.1

In addition, complex systems are usually regarded as open systems, exchang-
ing energy and/or matter (and/or information) with their environment. Other
features which are most often found in complex systems are internal self-reference
and external boundary conditions such as control parameters. Sometimes it is

1The contribution by Steinle in this volume addresses the significance of stability for the
reproducibility of experimental results in detail.
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argued that external boundary conditions gradually become internalized, i.e.,
become part of the internal dynamics of a system, if one is dealing with living
organisms (see, e.g., Atlan 1990). In this context, Maturana and Varela (1980)
established the concept of autopoiesis accounting for the fact that living system
are able to develop (and modify) their own boundaries. Higher levels in the
hierarchy, for instance cognitive or even social systems, raise yet more sophisti-
cated problems, above all the so-called “hard problem” (Chalmers 1995) of how
consciousness can be understood in its relation to the physical world.

2 Definitions of Complexity

Problems with standard scientific methodology arise already for definitions of
complexity. Subsequent to algorithmic complexity measures (Solomonoff 1964,
Kolmogorov 1965, Chaitin 1966, Martin-Löf 1966), a remarkable number of
different definitions of complexity have been suggested over the decades. Classic
overviews are due to Lindgren and Nordahl (1988), Grassberger (1989, 2012), or
Wackerbauer et al. (1994). Though some complexity measures seem to be more
popular than others, there are no clear or rigorous criteria to select a “correct”
definition and reject the rest.

It appears that for a proper characterization of complexity one of the fun-
daments of scientific methodology, the search for universality, must be comple-
mented by an unavoidable context-dependence, or contextuality. An important
example for such contexts are the role of the environment, including measur-
ing instruments, in the measurement process of quantum theory (Atmanspacher
1997).2 Another case in point is the model class an observer has in mind when
modeling a complex system (Crutchfield 1994). For a more detailed account
of some epistemological background for these topics compare Atmanspacher
(1997).

A systematic orientation in the jungle of definitions of complexity is im-
possible unless a reasonable classification is at hand. Again, several approaches
can be found in the literature: two of them are (i) the distinction of structural
and dynamical measures (Wackerbauer et al. 1994) and (ii) the distinction of
deterministic and statistical measures (Crutchfield and Young 1989).3 Another,

2A particularly relevant feature of quantum measurement for the discussion of reproducibility
is that successive measurements do not commute. This is due an uncontrollable backreation of
the measurement process on the state of the system. This feature is addressed in more detail
in the contributions by Collins and by Wang and Busemeyer in this volume.

3Note that deterministic measures are not free from statistical tools. The point of this
distinction is that individual accounts are delineated from ensemble accounts.
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Figure 1: Three patterns used to demonstrate the notion of complexity. Typically,
the pattern in the middle is intuitively judged as most complex. The left pattern
is a periodic sequence of black and white pixels, whereas the pattern on the right
is constructed as a random sequence of black and white pixels. (Reproduced
from Grassberger (1986) with permission.)

epistemologically inspired (Scheibe 1973) scheme (iii) assigns ontic and epis-
temic levels of description to deterministic and statistical measures, respectively
(Atmanspacher 1994).

A phenomenological criterion for classification refers to the way in which a
complexity measure is related to randomness, as illustrated in Figure 1 (for an
early reference in this regard see Weaver 1968).4 This perspective gives rise to
two classes of complexity measures: (iv) those for which complexity increases
monotonically with randomness and those with a globally convex behavior as
a function of randomness. Classifications according to (ii) and (iii) distinguish
measures of complexity precisely in the same manner as (iv) does: deterministic
or ontic measures behave monotonically, while statistical or epistemic measures
are convex. In other words: deterministic (ontic) measures are essentially mea-
sures of randomness, whereas statistical (epistemic) measures capture the idea
of complexity in an intuitively appealing fashion.

Examples for monotonic measures are algorithmic complexity (Kolmogorov
1965), various kinds of Rényi information (Balatoni and Rényi 1956), among
them Shannon information (Shannon 1949), multifractal scaling indices (Halsey
et al. 1986), or dynamical entropies (Kolmogorov 1958). Examples for con-
vex measures are effective measure complexity (Grassberger 1986), ε-machine
complexity (Crutchfield and Young 1989), fluctuation complexity (Bates and
Shepard 1993), neural complexity (Tononi et al. 1994), variance complexity (At-
manspacher et al. 1997).

An intriguing difference (v) between monotonic and convex measures can be
recognized if one focuses on the way statistics is implemented in each of them.

4It should be emphasized that randomness itself is a concept that is anything else than
finally clarified. Here we use the notion of randomness in the broad sense of an entropy.
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The crucial point is that convex measures, in contrast to monotonic measures,
are formalized meta-statistically: They are effectively based on second-order
statistics in the sense of “statistics over statistics”.5 Fluctuation complexity
is the standard deviation (second-order) of a net mean information flow (first-
order), effective measure complexity is the convergence rate (second-order) of a
difference of entropies (first-order), ε-machine complexity is the Shannon infor-
mation with respect to machine states (second-order) that are constructed as a
compressed description of a data stream (first-order), and variance complexity is
based on the global variance (second-order) of local variances of a distribution
of data. Monotonic complexity measures provide no such two-level statistical
structures.

While monotonic complexity measures are essentially measures of random-
ness, intuitively appropriate measures of complexity are convex. Corresponding
definitions of complexity are highly context-dependent, hence it is nonsensical
to ascribe an amount of complexity to a system without specifying the precise
context under which it is considered. As a consequence, already the assignment
of some degree of complexity is reproducible only if all relevant contexts are ex-
plicitly known and taken into account. Since convex complexity measures do not
obey a universal definition, strict reproducibility (as, e.g., in classical mechanics)
cannot be taken for granted in complex systems.

3 Complexity and Meaning

Grassberger (1986) and Atlan (1987) were the first to emphasize a close rela-
tionship between complexity and the concept of meaning (semantic information).
For instance, Grassberger (1989, his italics) wrote:

complexity in a very broad sense is a difficulty of a meaningful task. More
precisely, the complexity of a pattern, a machine, an algorithm etc. is the
difficulty of the most important task related to it. ... As a consequence
of our insistence on meaningful tasks, the concept of complexity becomes
subjective. We really cannot speak of the complexity of a pattern without
reference to the observer. ... A unique definition (of complexity) with a
universal range of applications does not exist. Indeed, one of the most
obvious properties of a complex object is that there is no unique most
important task related to it.

5“Second-order statistics” does not mean that the second moment of a distribution has to
be involved.



238 Atmanspacher and Demmel

Although this remarkable statement by one of the pioneers of complexity research
in physics dates almost 30 years back from now, it is still quite unclear how the
relation between complexity and meaning looks in detail. Before we come to
this, let us look at the notion of meaning in some more detail.

Traditionally, the concept of meaning has been of concern for philosophy, and
later psychology and cognitive science. Early in the 19th century, Schleiermacher
and Dilthey laid the foundations of what is today known as the “hermeneutic
method”, and late in the same century Brentano introduced the term “inten-
tionality” as the reference relation that connects a mental representation with
what it represents. Another approach, which will be of interest in the following,
is due to Peirce and has been given an information theoretical framework by
Morris (1955): the “semiotic approach”.

Semiotics, the study of signs, is constituted by three different fields: syn-
tactics, semantics, and pragmatics. While the syntactic level is relevant for the
interrelations between signs (e.g., grammar), semantics deals with the relation
between signs and what they designate (their meaning), and pragmatics focuses
on the relation between signs, their meaning, and their users. Applying this to
the realm of scientific models, one can distinguish between the syntactic level
of the pure formalism of a model, the semantic level of its interpretation, and
the pragmatic level of its application. Semantics addresses the meaning of the
formalism, and pragmatics addresses its usage.

However, the apparent clarity of this distinction is somewhat artificial. As
soon as one starts to consider aspects of constructing, testing, and working with
a model concretely, any rigorous demarcation dissolves. Ultimately, syntactics,
semantics, and pragmatics are no longer strictly separable (for a more detailed
discussion see Atmanspacher 1994, 2007). Nevertheless, their separation remains
useful as a tool for conceptual analysis. Within the present context, this allows
us to refer to meaning as the central notion of semantics without explicitly
incorporating syntactics and pragmatics at the same time.

Weaver’s contribution in the seminal work by Shannon and Weaver (1949)
indicated early on that the purely syntactical component of information today
known as Shannon information requires extension into semantic and pragmatic
domains. For instance, imagine a “Babylonian library” of books most of which
are meaningless to most readers because their texts merely satisfy some syntactic
rules (if at all). Only a small fraction of the syntactic information contained in
the library would amount to semantic information for a particular reader.6

6In this sense, a plausible condition for understanding meaning is that the structural organi-
zation of reader and text possesses commonalities. If this is the case, they are not independent,
and the mutual information between them is greater than zero. This can be discussed in terms
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How is it possible to check if a receiver understood the meaning of a mes-
sage? Shortly after Shannon and Weaver’s work, Bar Hillel and Carnap (1953)
proposed a quantification of semantic information based on a receiver’s ability
to draw valid logical conclusions from a received message. Their approach tries
to measure semantic information by its consequences. If meaning is understood,
then it triggers action and changes the structure or behavior of the receiver. In
this spirit, Weizsäcker (1974) has introduced a way to deal with the usage that
is based on the meaning of a message in terms of pragmatic information.7

Pragmatic information is based on the notions of novelty (“Erstmaligkeit”)
and confirmation (“Bestätigung”). Weizsäcker argued that a message that does
nothing but confirm the prior knowledge of a receiver will not change its structure
or behavior. On the other hand, a message providing (novel) material completely
unrelated to any prior knowledge of the receiver will not change its structure
or behavior either, simply because it cannot be understood. In both cases,
the pragmatic information of the message vanishes. A maximum of pragmatic
information is assigned to a message that transfers an optimal combination of
novelty and confirmation to its receiver. Purely syntactic Shannon information
represents the limiting case of pragmatic information for complete confirmation.
If novelty is added, Shannon information increases monotonically.

Pragmatic information can be made operationally accessible, as has been
shown by Gernert (1985) and Kornwachs and Lucadou (1985) who applied prag-
matic information to the study of cognitive systems. But also purely physical
systems allow (though not require) a description in terms of pragmatic infor-
mation. This has been shown by Atmanspacher and Scheingraber (1990) for
physical systems far from thermal equilibrium. Instabilities in a laser system can
be considered as meaningful in the sense of positive pragmatic information if
they are accompanied by a change of the degree of complexity of the system.

One may object that this approach does not yield explanatory surplus over
a purely physical model of such systems. However, if an explicit account of
cognition becomes unavoidable, this objection dissolves. Atmanspacher and Filk
(2006) demonstrated that the complexity of networks performing supervised
learning behaves non-monotonically as learning proceeds. Their plausible sug-
gestion is to interpret the maximum amount of complexity during the learning
process as the point at which the learning task is represented in a way that
becomes meaningful for the final solution of the task.

of monotonic complexity measures. For instance, Chaitin (1979) developed such a “common
information” in the framework of algorithmic information theory.

7A collection of papers concerning this concept can be found in the journal Mind and Matter
4(2) of 2006, including a more recent account by Weizsäcker and Weizsäcker (2006).
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Figure 2: Two classes of complexity measures: Monotonic complexity measures
essentially are measures of randomness, typically based on syntactic information.
Convex complexity measures vanish for complete randomness and can be related
to the concept of pragmatic information.

In a very timely and concrete sense, complexity and meaning are tightly
related in a number of approaches in the rapidly developing field of semantic
information retrieval as used in semantic search algorithms for databases (for an
early reference see Amati and van Rijsbergen 1998, a recent collection of essays is
due to de Virgilio et al. 2012). Many such approaches try to consider the context
of lexical items by similarity relations, e.g. based on the topology of these items
(see, e.g., Cilibrasi and Vitànyi 2007). This pragmatic aspect of meaning is
also central in situation semantics on which some approaches of understanding
meaning in computational linguistics are based (e.g., Rieger 2004).

Based on pragmatic information, an important connection between meaning
and complexity can be established (cf. Atmanspacher 1994, 2007). Applying a
proper algorithm in order to generate a regular pattern, e.g., a checker-board-
like period-2 pattern, the corresponding generation process is obviously recurrent
after the first two steps (compare Fig. 1 left). Considering the entire generation
process as a process of information transmission, it is clear that any part of the
process after its first two time steps just confirms these first steps. In this sense,
a regular pattern of vanishing complexity corresponds to a process of information
transmission with vanishing meaning as soon as an initial transient phase (the
first two time steps) is completed. This argument holds for both monotonic
(deterministic) and convex (statistical) definitions of complexity.

For a maximally random pattern the situation is more involved, since mono-
tonic, deterministic complexity and convex, statistical complexity lead to dif-
ferent assessments. Deterministically, a random pattern is generated by an
incompressible algorithm which contains as many steps as the pattern contains
elements. The process of generating the pattern is not recurrent within the
length of the algorithm. This means that it never ceases to produce elements
that are unpredictable (except the entire algorithm were a priori known, such
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as the sequence of digits of the number π). Hence, the process generating a
random pattern can be interpreted as a transmission of information completely
lacking confirmation, and consequently with vanishing meaning.

If the statistical notion of complexity is focused on, the process of pattern
generation is no longer related to the sequence of individually distinct elements.
A statistical generation of the pattern is not uniquely specific with respect to its
local properties; it is completely characterized by the global statistical distribu-
tion. This entails a significant shift in perspective. While monotonic complexity
relates to syntactic information as a measure of randomness, the convexity of
statistical complexity coincides with the convexity of pragmatic information as
a measure of meaning (see Figure 2). It is remarkable how the concepts of
complexity and meaning are explicitly complementary in this respect.

Subtle combinations of regular and random behavior in complex systems cor-
respond to subtle combinations of confirmation and novelty in terms of pragmatic
information. There is a correspondence between convex complexity measures and
pragmatic information as an operational measure of meaning. This correspon-
dence can be understood phenomenologically (by the behavior of those measures
as a function of randomness), formally (by their statistical structure), and con-
ceptually (by epistemological arguments). The relation between complexity and
meaning is important for learning theory, semantic information retrieval, and
computational linguistics.

4 Beyond Stationarity and Ergodicity

Another important set of complications beyond the methodology of conventional
science due to complex behavior refers to non-stationary, transient trajectories
at instabilities between different modes of stable behavior. In addition, ergod-
icity cannot be generally presupposed in such cases. Roughly, this means that
the ensemble average of a given system variable is no longer identical with its
time average along an individual trajectory. For non-ergodic systems, statistical
measures from ergodic theory must be carefully scrutinized (Tanaka and Aizawa
1993).8

As a consequence, imprudent applications of limit theorems in statistical
analyses of data from complex systems can lead to pitfalls and misinterpretations.
The framework of large deviations statistics (LDS), originally applied to problems
of statistical physics (Ellis 1985, Oono 1989), has been proposed as a useful tool

8Non-stationary and non-ergodic behavior in this sense is expected to play a particularly
significant role in living organisms and cognitive systems (cf. Freeman 1994, Nozawa 1994).
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for the study of complex systems (Aizawa 1989, Seppäläinen 1995).9 In cases
where it is difficult to see how a system variable behaves, LDS allows us to
estimate how long its convergence toward a limit will take.

If a variable is defined in the sense of an expectation value, then the relevant
framework is that of a level-1 LDS description. The expectation value is defined
in the limit of N → ∞, e.g., in a “thermodynamic” limit, where N can be the
number of particles, of degrees of freedom, of subensembles, etc. For instance,
the formalism of multifractal measures (Halsey et al. 1986, Paladin and Vulpiani
1987) is based on a thermodynamic limit; it is a level-1 theory and uses such
first-order statistical measures.

The law of large numbers states that in the appropriate limit a distribution
converges weakly to the unit point measure at the expectation value. LDS
specifies how fast it converges in terms of an (exponential) convergence rate,
the large deviation entropy (Ellis 1985). A more restrictive limit theorem which
(other than a law of large numbers) presupposes the existence of the second
moment of a distribution is the central limit theorem. It gives an estimate for
the probability that the size of properly defined, i.e., normalized, fluctuations
around the expectation value is of the order of

√
N .10

If the thermodynamic limit as a precondition for a law of large numbers in the
sense of a level-1 description cannot be presupposed, one can consider a higher
level at which the observed empirical distribution functions themselves (not single
variables) are treated as stochastic objects. Measures on such a higher level are
meta-statistical measures; they characterize the fluctuations of a distribution as
a function of N . Distributions in a purely structural (non-dynamical) sense give
then rise to meta-statistical level-2 descriptions.

A good example is the behavior of histograms of scaling indices for finite N
as a function of N , which become multifractal measures for N →∞ (cf. Halsey
et al. 1986). For distributions covering structural as well as dynamical elements it
can be reasonable to proceed to meta-statistical descriptions that are called level-
3 descriptions in the terminology of LDS (Ellis 1985). The stochastic objects of
these descriptions are trajectories or histories instead of level-2 distributions.

A level-(n − 1) theory can in general be obtained from the corresponding
level-n theory (“contraction principle”; Ellis 1985). For instance it is possible

9Relationships between LDS and ε-machine reconstruction in computational mechanics have
been indicated by Young and Crutchfield (1994). A most up-to-date collection of LDS appli-
cations in physics is due to Vulpiani et al. (2014).

10Some background on standard limit theorems in statistics can be found in the contribution
by Stahel, this volume. The extreme case of rare events, where the limit N → ∞ is not
achievable by definition, is treated by Kantz, this volume.
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to infer the convergence rate toward an expectation value (assuming that it
exists) from the convergence rate of its probability distribution. An analogous
contraction principle does not in general apply to the moments. If the distribution
function depends on time, ergodicity may break down so that ensemble averages
cannot be expressed as time averages. If this is not explicitly taken care of, this
can lead to severe problems with respect to the law of large numbers.

In a pertinent example, Pikovsky and Kurths (1994) clarified a correspond-
ing misunderstanding in numerical studies of globally coupled maps (see also
Griniasty and Hakim 1994). Coupled maps are networks of recursive nonlinear
maps, such as the logistic map, which have been used to study the spatiotem-
poral properties of commplex systems. Coupled map lattices can be seen as
discrete-time simulations of partial differential equations. Pioneering work in
this direction is due to Cruthfield, Kaneko and others in the early 1980s.

Pikovsky and Kurths (1994) showed that properly defined higher-order fluc-
tuations are consistent with the law of large numbers at level-3, although they
violate it at level-2 (Kaneko 1990). The reason is that stationarity and ergodicity
break down in complex systems such as coupled map lattices or, more specifically,
globally coupled maps (see also Aizawa 1989).

This is particularly interesting in view of the fact that such systems generi-
cally give rise to long-living transients – a field of research pioneered by Grebogi
et al. (1985) and recently reviewed by Tel and Lai (2008). So-called super-
transients are tightly connected to intrinsically unstable phases during which a
system transits from previously stable behavior to a new stable solution. Their
lifetimes scale exponentially or algebraically as a function of particular system
parameters once these parameters exceed a critical value. Supertransients are
frequent in spatially extended systems.

Coupled map lattices also offer an interesting playground for how intrinsically
unstable behavior can be stabilized – a kind of “non-hierarchical control” due
to the crucial dependence of each site in the lattice on its environment, e.g. its
neighboring sites. Numerical studies by Atmanspacher et al. (2005) showed
that this kind of feedback may stabilize the behavior of a system exactly in
its unstable regime (e.g., at unstable fixed points). This counterintuitive result
differs fundamentally from standard ways of controlling chaos by an ongoing
external adjustment of parameters (Ott et al. 1990).

Basic assumptions in the statistical analysis of systems in traditional science
are ergodicity, stationarity, stability, etc. All these assumptions can be inappro-
priate in complex systems. Particular examples show that, as a consequence,
statistical limit theorems need to be applied with great care, for instance with
the help of large deviations statistics. Since limit theorems are a basic statistical
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backbone of reproducible results, it is evident that the concept of reproducibility
must not be uncritically assumed but carefully checked in each individual sit-
uation. Extremely long-living transients between stable behavior may be other
indicators of intrinsically irreproducible behavior.

5 Conclusions

After several decades of research on complexity, there is now much evidence
for an intimate relationship between the phenomenological classes of monotonic
and convex complexity measures and the first-order and second-order statistical
structure of these measures, respectively. Problems with the application of limit
theorems (laws of large numbers, central limit theorem) can in a compact and
general manner be addressed within the framework of large deviations statistics
(LDS). First-order statistics (expectation values) may become irrelevant in sys-
tems requiring higher-order statistics (limit distributions, histories) as covered
by LDS.

On the other hand, it is well known that first-order limit theorems (for the
expectation value of an observable) often are not relevant for the statistical anal-
ysis of complex systems. For such systems it becomes mandatory to investigate
limits of distributions or even limits of histories of distributions. The connec-
tion between convex complexity measures and higher-order LDS thus indicates
promising novel directions with respect to a proper formal framework for the
study of complex systems.

The significance of these ideas is further supported by a number of impor-
tant epistemological issues (Atmanspacher 1994, 1997). Today it is a truism
that the complexity of a system cannot be uniquely characterized unless an ob-
server’s model of this system is explicitly taken into account.11 This implies that
complexity is not a property of a system “out there” but rather a property of the
relation between a system “out there” and the modeling framework by which it
is assessed.

As a straightforward consequence, any model of this relationship itself has
(at least) to be a meta-model (see, e.g., Casti 1992). A theory of complexity
in this sense must, thus, be a second-order (meta-) theory. Its referents are not
merely measured facts or data but also first-order models of these data and the
relation between the two. This relation manifests itself most evidently in the
process of model-building, or learning.

11See Grassberger (1989), but also Ehm and Stahel, both in this volume. What Collins, also
in this volume, addresses as “experimenters’ regress” and its consequences can be seen under
this aspect as well. This applies in particular to his recommendation for “meta-meta-analysis”.
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All this entails a profound change of perspective as compared to conventional
methodological principles in science. One of the most remarkable points in this
regard is the altered situation with respect to the issue of operationalization in
a metatheoretical framework. It is obviously inadequate to confirm or reject a
meta-model simply by a “naive” observation of a “pure” fact. Instead, proper
“experiments” have to include the relationship between data and models.

In general, their analysis has to be a meta-analysis, and in general it has to be
based on meta-statistics instead of conventional first-order statistics. The con-
cepts of predictability and reproducibility, which needed critical reconsideration
already for nonlinear dynamical, particularly chaotic, systems (see the contribu-
tions by Zimmerli and Bailey et al., this volume) will have to come under even
more scrutiny in a theory of complex systems.
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